

 ARL-TR-7589 ● JAN 2016

 US Army Research Laboratory

Touch-Based Interaction Approach for
Network Science Research and Visualization

by John P Hancock, Mathew Aguirre, and Andrew Toth

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7589 ● JAN 2016

 US Army Research Laboratory

Touch-Based Interaction Approach for
Network Science Research and Visualization

by John P Hancock and Mathew Aguirre
ArtisTech, Inc.

Andrew Toth
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2016
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

10/2014–09/2015
4. TITLE AND SUBTITLE

Touch-Based Interaction Approach for Network Science Research and
Visualization

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

John P Hancock, Mathew Aguirre, and Andrew Toth
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIN-T
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7589

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

ARL TNAB
10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Visualization of network science experimentation results is generally achieved using stovepipe solutions tailored to specific
experiments and performance metrics. Based on ZeroMQ, the US Army Research Laboratory (ARL) Visualization
Framework presents a language-agnostic, platform-independent approach to connecting data published by probes to
visualizations using a publish/subscribe mechanism. Visualizations can be augmented using touch-enabled displays such as
the MultiTaction M550L. This report documents adaptation of the MultiTaction display to the ARL Visualization Framework
using a Tangible User Interface Object (TUIO).

15. SUBJECT TERMS

TUIO, Visualization

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

22

19a. NAME OF RESPONSIBLE PERSON

Andrew Toth
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

301-394-2746
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures iv

1. Introduction 1

2. TUIO Mouse Driver 5

2.1 Installation 6

2.2 ZeroMQ Support 6

2.3 Dependencies 6

2.4 ZeroMQ Transmission/Serialization 7

2.5 Installation 7

3. TUIO ZeroMQ Publish 8

3.1 Installation 8

3.2 ZeroMQ Transmission/Serialization 9

3.3 Conclusion and Future Directions 9

4. References 11

Appendix. TUIO Protocol Buffer Message Definitions 13

Distribution List 16

Approved for public release; distribution is unlimited.
iv

List of Figures

Fig. 1 NSRL Experimentation Architecture ...1

Fig. 2 ARL Visualization Framework Simplified Architecture3

Fig. 3 MultiTaction display device and multi-user tactile interaction3

Fig. 4 TUIO Interaction Architecture ...4

Fig. 5 MultiTaction display interaction methods ...9

Approved for public release; distribution is unlimited.
1

1. Introduction

The US Army Research Laboratory (ARL) Network Science Research Laboratory
(NSRL) is composed of a suite of hardware and software that models the operation
of mobile networked device radio frequency (RF) links through emulation (not
merely simulation). NSRL enables experimental validation or falsification of
theoretical models, and characterization of protocols and algorithms for mobile
wireless networks. It is used for a range of experiments, from assessing in-network
aggregation of network information for detecting cyber threats, to characterizing
the impact of communications disruption on perceived trust and quality of
information metrics delivered to Soldiers in tactical mobile environments. Unlike
other experimentation facilities for research in wireless networks, NSRL is focused
on Army-unique requirements like hybrid networks and extensive modeling of
ground and urban effects on communications. The NSRL supports investigation of
traditional wireless networking challenges, as well as more general network science
research issues. The NSRL’s emulation environment is result of collaborative
efforts between ARL and the Naval Research Laboratory (NRL).

Fig. 1 NSRL Experimentation Architecture

Approved for public release; distribution is unlimited.
2

The software and systems running on the emulated networks execute in real-time,
unlike simulations, which typically execute faster than real-time by jumping from
event to event, skipping the time between events. One of the biggest advantages of
emulated environments is that the characteristics of the network and its behaviors
can be fully controlled and are repeatable. This is particularly interesting when
emulating wireless networks, as reproducibility of experimental environments
using real radios is often difficult; temperature and humidity changes, differences
in seasonal foliage, and other factors can alter the performance of the wireless
networks. The primary emulation tools used by ARL are the Extendable Mobile Ad
hoc Network Emulator (EMANE)1 and the Common Open Research Emulator
CORE.2

Researchers at the NSRL developed the ARL Visualization Framework3 to improve
the process of network science experimentation by providing a generic approach to
experimental results visualization. Most experiments collect data via log files,
which are written to a storage device for post-processing and analysis.
Experimental results in the individual log files must be synchronized prior to
processing to link data points of individual experiment runs. Visualization of results
has typically been accomplished using “stove-pipe” visualization applications
developed specifically for a particular experiment.

The ARL Visualization Framework will use a ZeroMQ-based bus to route data
from Probes to VizDaemons interested in displaying the probe data using a
publish/subscribe architecture. Probes can be any application or script that can
produce ZeroMQ-compliant messages containing data of interest. This data can
range from network metrics collected in an experiment to server CPU statistics.
VizDaemons consume only the ZeroMQ messages published by the probes to
which they subscribe and display them accordingly. While VizDaemons will
typically be used for visual output types, there is no reason the output cannot be
aural. A simplified depiction of the ARL Visualization Framework can be seen in
Fig. 2.

Approved for public release; distribution is unlimited.
3

Fig. 2 ARL Visualization Framework Simplified Architecture

This ARL technical report documents the design of a reusable interface for multi-
touch interactive displays in the NSRL that leverages the ARL Visualization
Framework. The multi-touch display from MultiTaction4 allows multiple users to
interact with the display simultaneously (Fig. 3) in several advanced touch
interaction metaphors. An interface approach that uses open source libraries, which
allows mapping of simple and complex multi-user interactions to a visualization
server, is required to distribute interaction notifications to multiple subscribed
systems in the NSRL.

Fig. 3 MultiTaction display device and multi-user tactile interaction

This approach will allow multiple users to interact with multiple NSRL applications
through a shared interface. The interface also goes beyond point/drag/click mouse
metaphors, allowing hand and gesture recognition to interact with objects and
blobs. Mapping of these gesture-defined elements will be done as the NSRL
functions come online and are ready for visualization. This work paves the way for
future advanced interface design by bringing the touchscreen interaction detections

Application

Probe

Application

Probe

Application

Probe

 Display

VizDaemon

Multi-
Touch

VizDaemon

VizDaemon

VizDaemon

VizDaemon

Approved for public release; distribution is unlimited.
4

out to a server that can interact with other subscribed NSRL display and computing
systems.

The NSRL currently has 2 MultiTaction 550L embeddable displays. Each of these
displays has an internal Linux server that reads, interprets, tracks, and reports
multiple simultaneous human touch events on the screen surface. The display
computer can be configured to send these interpreted events out in an open standard
Tangible User Interface Object (TUIO)5,6 format, which has cursor, object, and blob
definitions. In this work we defined an architecture, developed a driver, and
designed and developed a server to distribute reported screen interactions to any
number of subscribed applications in the NSRL. The TUIO interaction architecture
is illustrated in Fig. 4.

Fig. 4 TUIO Interaction Architecture

We used a TUIO-based approach to integrate ARL’s Multi-Taction (MT) MT-550L
displays to the visualization capabilities that are emerging for the new NSRL. The
2-dimensional (2D) TUIO network-based interfaces were mapped to the MT550L
to work with both Linux and Mac operating systems. This solution was created
using an open source approach tailored to the specific needs of ARL. This approach
is general and should apply to other touch screen devices, and be extensible to
objects, blobs, and even haptic or other 3D interfaces in the future.

The system diagram of the Pub/Sub architecture in Fig. 4 illustrates the high-level
view of the functional and software architecture of the visualization interaction
system. The TUIO Driver and Server are both written in Java with interfaces

MultiTaction
MT550L

Reader Application

LAN

TUIO Driver
Map TUIO to

schema

TUIO Server
Map Schema

to Device,
Event

MultiTaction
MT550L

LAN

ZeroMQ to Subscribing

Systems

Approved for public release; distribution is unlimited.
5

defined using the Google Protocol Buffers. The server has a protocol buffer
definition of the 2D TUIO interfaces; the full set (as of this writing) is in Appendix,
and the latest is always available at https://github.com/artistech-inc/tuio-zeromq-
publish/blob/master/src/main/resources/protobufs/TUIO.proto

The MultiTaction displays are configured to output captured tactile events in TUIO
format over the attached Ethernet. The TUIO reader application reads the tactile
TUIO events from each screen, maps them to an event model schema, and sends
them to be distributed to subscribed systems in the NSRL via a ZeroMQ message
queue server.

The TUIO interfaces are based on the open source definitional specification
available online at the open source website8 for the standard.

This Java-based approach is designed to support both the Linux and Mac OS
machines in the NSRL, and has also been tested on Android devices.

2. TUIO Mouse Driver

The TUIO Driver was configured, for this initial prototype, as a mouse driver to
run on devices that have their interfaces displayed on the MT displays. Mouse
move, left-click, and right-click are implemented, and the MT display was tested
as the touch interface for a Mac computer browser on the NSRL network.

The following motions are how a user manipulates the touch screen acting as a
mouse using a TUIO device.

1) One finger is for mouse move.

2) Two fingers is for left-click. Mouse down is maintained while the second
finger is pressed.

3) Three fingers is right-click. Mouse up is immediately called; no need to
keep finger down.

The TUIO Mouse Driver cursor control is the first tactile message interface that
was developed, integrated, and successfully tested on the ARL MT displays. The
TUIO Server message schema is implemented in the Google Protocol Buffer
interface definition detailed below describing available fields.

message Cursor {
 required float x = 1;
 required float y = 2;
 optional Time tuioTime = 3;
 optional Time startTime = 4;

http://tuio.org/

Approved for public release; distribution is unlimited.
6

 required int64 sessionID = 5;
 optional float xSpeed = 6;
 optional float ySpeed = 7;
 optional float motionSpeed = 8;
 optional float motionAccel = 9;
 repeated Point path = 10;
 required int32 tuioState = 11;
 required int32 cursorID = 12;
}

2.1 Installation

The mouse driver developed for this program is hosted on github, which is a web-
based git repository.7 To get and make the mouse driver:

1) git clone https://github.com/artistech-inc/tuio-mouse-driver.git

2) cd tuio-mouse-driver

3) git checkout v1.1.3

4) mvn package

5) java -jar target/tuio-mouse-driver-1.1.3.jar

2.2 ZeroMQ Support

This module supports the ability to subscribe to TUIO broadcasts via Zero Message
Queue, ZeroMQ, to integrate with the ARL Visualization Framework.

2.3 Dependencies

ZeroMQ support is dependent on available native libraries. When compiling,
maven will search for these files and provide any jar dependencies suitable.

1) Linux:
1) Searches for /usr/lib/libjzmq.so
2) If this file exists, the dependency jar jzmq.jar is imported.
3) If this file is missing, the dependency jar jeromq.jar is imported.

2) Mac OS X:
1) Searches for /usr/lib/libjzmq.dynlib
2) If this file exists, the dependency jar jzmq.jar is imported.
3) If this file is missing, the dependency jar jeromq.jar is imported.

https://github.com/artistech-inc/tuio-mouse-driver.git
http://zeromq.org/
https://github.com/zeromq/jzmq
https://github.com/zeromq/jeromq
https://github.com/zeromq/jzmq
https://github.com/zeromq/jeromq

Approved for public release; distribution is unlimited.
7

The 2 jar files provide identical support. However, the jzmq.jar file uses JNI to
provide faster support, where jeromq.jar is a pure java implementation. The
jzmq.jar requires libjzmq.so, which in turn requires libzmq.so to be available.

2.4 ZeroMQ Transmission/Serialization

For the purposes of NSRL visualization, the decision was made to standardize on
Google Protocol Buffer interface definitions, but in the larger scheme of Network
Science experimentation, other interaction serialization mechanisms are also used.
We took the inclusive approach to design of the Zero Message Queue publish and
subscribe service, and included multiple serialization approaches. Transmission of
the TUIO messages via ZeroMQ is provided by 3 different mechanisms:

1) Java Object Serialization

2) JSON Serialization (using Jackson)

3) Google Protocol Buffer

In this open architecture, to the ZeroMQ subscribing client it is unknown how an
incoming object has been serialized by the publisher, and so all 3 mechanisms are
attempted for deserialization. This approach generalizes the interface:

1) For any clients that are doing Java and want to serialize, and are not using
Google Protocol Buffers as the intermediary.

2) For any other language that wants to interact but is not using Google
Protocol Buffers as the intermediary.

3) For any language that is using Google Protocol Buffers.

This open interface approach will simplify integration with a wide range of
applications using Java objects, JSON, or Google Protocol Buffers.

2.5 Installation

To get and make the ZeroMqMouse driver:

1) git clone https://github.com/artistech-inc/tuio-mouse-driver.git

2) cd tuio-mouse-driver

3) git checkout v1.1.3

4) mvn package

https://github.com/zeromq/jzmq
https://github.com/zeromq/jeromq
https://github.com/FasterXML/jackson
https://developers.google.com/protocol-buffers/
https://github.com/artistech-inc/tuio-mouse-driver.git

Approved for public release; distribution is unlimited.
8

5) java -cp target/tuio-mouse-driver-1.1.3.jar
com.artistech.tuio.mouse.ZeroMqMouse -z <ZMQ_PUB_HOST:PORT>

If using the companion tuio-zeromq-publish application, the default port used is
5565, so invocation would look similar to:

java -cp target/tuio-mouse-driver-1.1.3.jar
com.artistech.tuio.mouse.ZeroMqMouse -z localhost:5565

The latest Mouse Driver technical documentation and code is maintained at:
https://github.com/artistech-inc/tuio-mouse-driver, the following is a version of it
that is current at the writing of this document.

3. TUIO ZeroMQ Publish

Integrating the Multi-Taction displays with the ARL Visualization Framework
requires a publish bridge for receiving TUIO messages and then publishing them
via ZeroMQ to the visualization framework. This section describes the publish
bridge.

3.1 Installation

To get and make the TUIO publisher:

1) git clone https://github.com/artistech-inc/tuio-zeromq-publish.git

2) cd tuio-zeromq-publish

3) git checkout v1.1

4) mvn package

5) java -jar target/tuio-zeromq-publish-1.1.jar

As configured, this application will listen (by default) on port 3333 for TUIO
messages. Once received, these messages are serialized (by default) using Google
Protocol Buffers and published (by default) on port 5565. A companion client can
be used to receive these messages, deserialize, and process.

To change these options the following command line options are available:
-h,--help Show this message.
-s,--serialize-method <arg> Serialization Method (JSON, OBJECT,

Default
 = PROTOBUF).
-t,--tuio-port <arg> TUIO Port to listen on. (Default =

3333)

https://github.com/artistech-inc/tuio-zeromq-publish
https://github.com/artistech-inc/tuio-mouse-driver
http://tuio.org/
http://zeromq.org/
https://github.com/artistech-inc/tuio-zeromq-publish.git
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://github.com/artistech-inc/tuio-mouse-driver

Approved for public release; distribution is unlimited.
9

-z,--zeromq-port <arg> ZeroMQ Port to publish on. (Default

= 5565)

3.2 ZeroMQ Transmission/Serialization

Transmission of the TUIO objects via ZeroMQ is provided by 3 different
mechanisms.

1) Java Object Serialization

2) JSON Serialization (using Jackson)

3) Google Protocol Buffer

The ZeroMQ Publish technical documentation is available at the ArtisTech github
site;7 the following is a version that is current at the writing of this document. The
applications, code, and documentation are part of an ongoing program to conduct
experiments in the Network Science CTA, generally, and in the new NSRL,
specifically. This TUIO display, control, and dissemination system is intended for
use by ARL and associated researchers, who we expect will have variant needs and
will evolve this set of applications to meet unique visualization and control needs.
GitHub provides a clean public mechanism to distribute, maintain, and if need be,
fork the code and control maintainability.

3.3 Conclusion and Future Directions

Looking toward the future, the current implementation of the touch interface has
only implemented the most familiar touch interactions. As seen Fig. 5, the MT
displays have a richer set of multiple point touch, pen, and other interactions.

Fig. 5 MultiTaction display interaction methods

https://github.com/FasterXML/jackson
https://developers.google.com/protocol-buffers/

Approved for public release; distribution is unlimited.
10

As Network Science matures as a topic, there will be opportunity to apply more
complex interaction manipulations to displays, experiments, simulations and
datasets; this TUIO-based approached is designed to be extensible and flexible to
support a wide range of screen interaction metaphors.

Approved for public release; distribution is unlimited.
11

4. References

1. Extendable Mobile Ad-hoc Network Emulator (EMANE),
http://www.nrl.navy.mil/itd/ncs/products/emane

2. Common Open Research Emulator (CORE), http://www.nrl.navy.mil/
itd/ncs/products/core

3. Dron Will, Keaton Mark, Hancock John, Aguirre Mathew, Toth Andrew J. US
Army Research Laboratory visualization framework design document.
Adelphi (MD): Army Research Laboratory (US); to be published. Report No.:
ARL-TR-7561.

4. http://www.multitaction.com

5. Kaltenbrunner M, Bovermann T, Bencina R, Costanza E. TUIO A Protocol for
Table-Top Tangible User Interfaces, (http://mtg.upf.edu/node/408)

6. http://www.tuio.org

7. https://github.com/artistech-inc

8. TUIO Specification: http://tuio.org/?specification

http://mtg.upf.edu/biblio/author/61
http://mtg.upf.edu/biblio/author/125
http://mtg.upf.edu/biblio/author/126
http://mtg.upf.edu/biblio/author/105

Approved for public release; distribution is unlimited.
12

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
13

Appendix. TUIO Protocol Buffer Message Definitions

Approved for public release; distribution is unlimited.
14

package TUIO;

option java_package = "com.artistech.protobuf";
option java_outer_classname = "TuioProtos";

message Time {
 required int64 seconds = 1;
 required int64 microseconds = 2;
 required int64 frameID = 3;
}

message Cursor {

 required float x = 1;
 required float y = 2;
 optional Time tuioTime = 3;
 optional Time startTime = 4;

 required int64 sessionID = 5;
 optional float xSpeed = 6;
 optional float ySpeed = 7;
 optional float motionSpeed = 8;
 optional float motionAccel = 9;
 repeated Point path = 10;
 required int32 tuioState = 11;

 required int32 cursorID = 12;

}

message Blob {

 required float x = 1;
 required float y = 2;
 optional Time tuioTime = 3;
 optional Time startTime = 4;

 required int64 sessionID = 5;
 optional float xSpeed = 6;
 optional float ySpeed = 7;
 optional float motionSpeed = 8;
 optional float motionAccel = 9;
 repeated Point path = 10;
 required int32 tuioState = 11;

 required int32 blobID = 12;
 required float angle = 13;
 required float width = 14;
 required float height = 15;
 required float area = 16;
 required float rotationSpeed = 17;
 required float rotationAccel = 18;

}

message Object {

Approved for public release; distribution is unlimited.
15

 required float x = 1;
 required float y = 2;
 optional Time tuioTime = 3;
 optional Time startTime = 4;

 required int64 sessionID = 5;
 optional float xSpeed = 6;
 optional float ySpeed = 7;
 optional float motionSpeed = 8;
 optional float motionAccel = 9;
 repeated Point path = 10;
 required int32 tuioState = 11;

 required int32 symbolID = 12;
 required float angle = 13;
 required float rotationSpeed = 14;
 required float rotationAccel = 15;

}

message Point {

 required float x = 1;
 required float y = 2;
 optional Time tuioTime = 3;
 optional Time startTime = 4;
}

Approved for public release; distribution is unlimited.
16

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 2 US ARMY RESEARCH LAB
 (PDF) RDRL CIN T
 A TOTH
 B RIVERA

	List of Figures
	1. Introduction
	2. TUIO Mouse Driver
	2.1 Installation
	2.2 ZeroMQ Support
	2.3 Dependencies
	2.4 ZeroMQ Transmission/Serialization
	2.5 Installation

	3. TUIO ZeroMQ Publish
	3.1 Installation
	3.2 ZeroMQ Transmission/Serialization
	3.3 Conclusion and Future Directions

	4. References
	Appendix. TUIO Protocol Buffer Message Definitions

